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A Surface Integral Approach to the
Motion Planning of Nonholonomic Systems

Raijijan Mukherjeet David P. Andersont

Mechanical Engineering Department
Naval Postgraduate School

Monterey, CA 93943

Abstract

Nonholonomic mechanical systems are governed by constraints of motion that are nonintegrable

differential expressions. Unlike holonomic constraints, these differential constraints do not reduce the

number of dimensions of the configuration space of a system. Therefore a nonholonomic system can

access a configuration space of dimension higher than the number of tile degrees of freedom of the

system. In this paper, we develop an algorithm for planning admissible trajectories for nonholonomic

systems that will take the system from one point in its configuration space to another. In our algorithm

we first converge the independent variables to their desired values and then use closed trajectories of the

independent variable to converge the dependent variables. We use Stokes's theorem in our algorithm

to convert the problem of finding a closed path into that of finding a surface area in the space of

the independent variables, such that the dependent variables converge to their desired values as the

independent variables traverse along the boundary of this surface area. The use of Stokes's theorem

simplifies the motion planntUlg problem and also imparts global characteristics. The salient features of

our algorithm are apparent in the two examples we discuss - a planar space robot and a disk rolling

without slipping on a flat surface.
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1. Introduction

Nonholonomic mechanical systems are governed by constraints of motion that are
nonintegrable differential expressions of the form

n

aj,,dq, +atdt = 0, j=1,2,...n )

where, the q's represent the generalized coordinates, t represents time, and the a's are,
in general functions of the q's and t. As a result of the nonintegrable nature of these
differential constraints, it is not possible to obtain functions of the form

Oj(ql,q'2,'. ,q., t) = 0, j = 1,2,-.-rm (2)

that will enable us to eliminate some of the dependent variables. Naturally, nonholonomic

systems require more coordinates for their description than there are degrees of freedom
in the system.

An interesting feature of nonholonomic mechanical systems is their ability to access
a configuration space of dimension higher than the number of it's degrees of freedom. A
simple example is that of a disk rolling without slipping on a flat. surface. The configu-
ration space of the disk rolling on the x-y plane, shown in Fig.1, is described by the four
coordinates (x, y, 0, a), but the degrees of freedom of the system is only two because of the

following two nonholonomic constraints

dx - r sinadU = 0

dy - r cos adO = 0 (3)

Inspite of having only two degrees of freedom, it is quite intuitive that the rolling disk can
arrive at any configuration (x, y, 0, a) from any other, through proper path planning. Such

a property is common to nonholonomic mechanical systems and can be attributed to the
nonintegrable nature of their differential constraints.

For the rolling disk, our intuition can be strengthened if we consider the following
example. Suppose, it is desired that the disk in Fig. 1 change its coordinates from (x, Y, 0, a)
to (Xd,Yd,O,a). Then a feasible trajectory would be the path segments AO and OC. The

disk would roll forward from A to O, and then roll backward from 0 to C. The individual
path segments AO and OC should have equal lengths such that 0 comes back to its initial

value at the end of the path. Furthermore, the straight lines AB and CD should be tangent
to the path segments AO and OC respectively, at the points A and C. This will ensure that
the net change of the variable a will also be zero over the complete path. Such a path can

always be planned and this leads us to believe that the dependent variables x and y can
indeed be changed arbitrarily through cyclic motion of the indepcndent variables 0 and a.

2



Therefore to converge all the configuration variables of the disk from one set of values to
another, we could first converge the independent variables from their initial values to their
desired values without being concerned about the evolution of the dependent variables, and
then use cyclic motion of the independent variables to converge the dependent variables
to their desired values.

In this paper we will develop an algorithm for nonholonomic motion planning - one
that will enable us to converge all the configuration variables of a nonholonomic system
from one set of values to another. This algorithm will follow a two step procedure - first
converge the independent variables, and then use cyclic motion of tile independent variables
to converge the dependent variables.

The nonholonomic motion planning problem has been the focus of attention -f various
researchers in the recent past. Specifically, researchers have looked into the problems of
mobile robot navigation [1], [5], [6], [10], parking a front-wheel drive car or a car with
multiple trailers [9], [10], dextrous manipulation with robotic fingers [21, attitude control
of a satellite using two rotors instead of gas-jets, reconfiguration of a space manipulator
or a space structure using only internal motion [121, etc. The multibody car system was
studied in [10] and it was concluded that it is a well controllable system. This result was
obtained by first constructing the control Lie algebra. Tile controllability was concluded
by showing that the rank of the control Lie algebra is equal to the dimension of the state
space, at every point in the state space. Such an analysis only provides sufficient conditions
for the controllability and is useful for simple nonholonomic systems. It cannot be used
to verify the controllability of a complex system like a 6-DOF space robot. Assuming
the existence of a feasible trajectory connecting an initial and some desired values of the
generalized coordinates, the nonholonomic motion planning of space robots was discussed
in [12]. The nonholonomy of a space robot is attributed to the conservation of its angular
momentum. A space robot consisting of a six joint manipulator mounted on a space
vehicle was described by nine generalized coordinates consisting of six joint angles of the
manipulator and the three Euler angles of orientation of the space vehicle. By directly
controlling only the joints of the manipulator, it was shown that it is possible to converge
all tile nine state variables to their desired values. Tile trajectory was planned using a
Lyapunov function and by adopting a bi-directional approach.

An algorithm for steering a general class of nonholonomic systems was developed in
[11] using sinusoids. This algorithm was applied for the motion planning of a front wheel
drive cart, and reconfiguration of a hopping robot in flight phase. In this algorithm, tile
independent variables were first steered to their desired configuration ignoring the evolution 0
of the dependent variables. Consequently, the dependent variables were converged to their 0

desired values using closed trajectories of the independent variables. Such an approach
was proposed earlier [15], for the motion planning of a space manipulator, where the cyclic
motion of the joints of the space manipulator was used to change tile orientation of tile! k.,4±abilIty C3oGqlM
whole system. Dnc QUA/ATY T'N8PECrD 6 [ A. -v-abl "

3 Mlt s $peoalaJ
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In this paper, we will discuss the motion planning of nonholonornic systems using
an algorithm in which the prerogative is to find a closed trajectory of the independent
variables that converge the dependent variables to their desired values. In our approach,
we use Stokes's theorem to reduce this problem into finding a surface area such that the
dependent variables converge to their desired values while the independent variables travel
along the boundary of this surface area. The main advantage is the global nature of our
planning algorithm, unlike the local path planning approach based on Lyapunov functions
[121. Due to the global nature of the algorithm, questions pertaining to the reachability of
the system can be readily answered, problems related to singularity can be tackled, and
feasible trajectories can be easily planned even in the presence of additional constraints.
For a nonholonomic system like a space robot, these additional constraints may appear in
the form of joint limits or obstacles in the workspace. Our algorithm additionally provides
us with insight into trajectories that produce repeatable motion. Repeatability in the
motion may be simply a desirable property as in the case of space robots, or may even be
used for singularity avoidance as in the case of a rolling disk.

This paper is organized as follows. In section 2 we discuss the mathematical prelin-

inaries and the properties of nonholonomic systems. In section 3, we discuss some of the
issues related to the motion planning of nonholonomnic systems. In section 4, we present
our algorithm for the nonholonomic motion planning through examples. Specifically, we
discuss the motion planning of a planar space robot and a disk rolling without slipping
on a flat surface. The different salient features of our algorithm are apparent in these two

examples.

2. Mathematical preliminaries

2.1 Line and surface integrals: Stokes's theorem

In this section we recall Stokes's [81 theorem used for the tranformation of line integrals
into surface integrals, and vice verca. The material discussed in this section will serve as
a mathematical tool for the trajectory planning of nonholonomic systems.

Theorem 1: Stokes's Theorem Let S be a piecewise smooth oriented surface* in space
and let the boundary of S be a piecewise smooth closed curve C. Let v(x,y,z) be a
continuous vector function which has continuous first partial derivatives in a domain in
space which contains S. Then

J isn"(V x v)dA= j vtds (4)

where, n is the unit vector normal to the surface S on that side of S which is taken as the
positive side. The positive direction along C is then defined as the direction along which

* If a surface S has a unique normal whose direction depends continuously on the points

of S, then S is called a smooth surface. If S is not smooth but can be subdivided into
finitely many smooth portions, then it is called a piecewise smooth surface.
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an observer, traveling on the positive side of S, would proceed in keeping the enclosed area
to his left. (see Fig.2 (a)). v, is the component of v in the direction of the tangent vector
of C.

If the direction cosines of the unit vector n normal to the surface S are a, f, and y,
and if V = Vli + V2j + v3k, then Stokes's theorem can be written as

f f[2( o () I yO 3 )V2 v\

I ~ Jlz o~z OX axs dA)

= f (vl dx + V2 dy + v3 dz) (5)

If we restrict ourselves to the x-y plane, then Stokes's theorem simplifies to the form

) V (6)

which is essentially a statement of Green's theorem [8]. For the above equation the positive
direction of travel along the closed curve C is shown in Fig.2 (b). This directly followed
from Eq.(5) where we substituted (a, -y) = (r/2,ir/2, 0). We may change the direction of
the closed curve C in Eq.(6) by using (a,,7) = (7r/2,ir/2, r) in Eq.(5). This will lead to a
change in sign of the surface integral in Eq.(6).

Another important theorem that will serve as an important tool for our analysis deals
with the path independence of line integrals. This theorem is formally stated next [8]

Theorem 2: Let v = vu i + v2 j + v3 k, and let v1, V2, and v3 be continuous functions of
x, y, and z in a domain D of space. Then the line integral

jc (vldx+V2dy+V3 dz) (7)

is independent of path if and only if the differential form under the integral sign in exact
in D, or equivalently the integral is zero for every simple closed path in D, or equivalently
V x v = 0, everywhere in D.

From the above theorem we see that the necessary and sufficient condition for the
exactness of the differential form under the integral sign in Eq.(7) is

002 _03 V3 a Ovj oV (8)
az by' Ox bz by Ox

2.2 Properties of nonholonomic systems

In this section we discuss some of the important properties of nonholonomic systems.
These properties will aid us to develop the motion planning schemes in the section 4.

In section 1 we mentioned that nonholonomic constraints are nonintegrable expressions
of the form as in Eq.(1) that cannot be simplified into expressions of the form as in Eq.(2).
To further our discussion, we consider again the example of the disk rolling without slipping
on a flat surface whose first constraint equation is

5



dx - r sin a dO = 0 (9)

The above constraint is not an exact differential since there exists no function O(x, a, 0)
such that Eq.(9) can be reduced to the form

do L= dx + a + LO do = o

iOx Oac 80
Furthermore, Eq.(9) cannot be multiplied by an integrating factor to yield an exact dif-
ferential. Hence it is not integrable*. It can be shown that the necessary and sufficient
condition for the integrability of the differential equation

v, dx+ v 2 dy + v 3 dz = 0

is that

VI( V2 _OV3 (aV -aV av~ l _Ov 49V2-,g\a + V2 +v 7-x jz) +V3 'j*\ -ix- =0 (10)

Applying this criterion to Eq.(9) we confirm that the expression is not integrable. In tile
more general case, the necessary and sufficient condition that the differential constraint in
n variables (Ince, 1956)

v, dxl + v7, dX2 + + v. dx. = 0

is integrable, is that the set of equations

v,. (ýOVý - A,)+ V" \OVA - V +v \OA av , / = U 0
49vA _x ax" iOV A (9X A0 9x

(A,v,, v 1, 2,+ n) (11)

are satisfied simultaneously, and identically.

The nonrholonornic property of a dynamical system can also be ascertained from the
noninvolutive property of the distribution that spans the tangent space of the system, using
Frobenius's theorem. If X, E R", i = 1,2,.- m denote the vector fields of the system, then
the distribution A = span {X 1 , X 2,.. . , X,g) is involutive if and only if A is closed under
Lie bracket operations. Otherwise, the system is noninvolutive or nonholonomnic. In the
case of the rolling disk,

'n' 0 Cos a
• .XI 6,+ X2 0 X, ) •, X2 Sill(12)

[AX1  =-X2] ý (P2) X, - (-- X 2 =(rcoso -rsina 0 0 )T

* A differential expression is integrable if it is an ,-A•t differential or can be converted

into an exact differential after multiplying with an integrating factor.
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Clearly, Xi, X 2, and their Lie bracket [XI, X 2 ) are linearly independent. This reconfirms
that the rolling disk is a noninvolutive or a nonholonomic system.

The discussion in this section so far enables us to ascertain the nonholonomy of a
dynamical system from its differential constraints. We now investigate the manifestation
of these nonholonomic constraints.

If a dynamical system is described by n generalized coordinates, arid m holonomic
constraints of the form as in Eq.(2), the motion of the system is always confined to a
manifold or surface of dimension (n - in), which is equal to the number of degrees of

freedom of the system. Then, if we specify the (n - m) independent variables, it is possible
to uniquely determine the remaining m dependent variables. This is not true when the
constraints are nonholonornic or nonintegrable expressions of the form as in Eq.(1). The
kinematic effect of a nonholonomic constraint is to constrain the direction of the allowable
motions at any given point in the configuration space. But this does not reduce the number
of dimensions in the configuration space, nor does it limit the variety of configurations
available to the system. As a direct consequence, given the values of the independent
variables, it is not possible to uniquely specify the values of the dependent variables of a
nonholonomic system. When the independent variables take one set of values from another,
the change in the dependent variables depend upon the path taken by the independent
variables. Quite naturally, if the independent variables travel along a closed path, the
values of the dependent variables at the beginning and end of the path are usually not the
samne,

The above mentioned property of a nonholonomic system is better understood by the
use of Theorem 2 on line integrals. Comparing Eq.(8) (conditions for exactness) to Eq.(10)
(conditions for integrability), or directly from the definition of integrability, we know that
exactness implies integrabiliLy*. Therefore it follows that a nonmiitegrable expression is not

exact. Consider now a nonholonomic system where one of the dependent variables is p and
it is constrained by the differential expression dp = v, dx + v2 dy + v3J dz, where x, y, and z

are the independent variables. vi, v2, and V3 are continuou!Q functions of x, y, arid z. Since
the system is nonholonomic or nonintegrable, the differential form v, dx + V2 dy + v3 dz is riot
exact. Therefore it follows from Theorem 2 that the change of p is path dependent, and
this change is not zero for every closed path. This suggests the following.

1. It is possible to change the coordinates of the dependent variable p of the nonholonorric
system using appropriate closed trajectories of the independent variables, and

2. There may exist some closed paths for which the path dependent integral in Eq.(7)

will be zero for the nonholonomic system.

On the basis of statement 1 discussed above, we now assume that there exists some closed

* Integrability however does not imply exactness because an integrdble differential ex-

pression could have become exact only after it was multiplied by some multiplicating

factor.
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trajectory C of the independent variables x, y, and z that produce a change in the dependent
variable p by some desired amount Ap. If (xo, yo, zo) be any point on this closed trajectory

and if the initial configuration of the system is (xo, yo, zo,po), then after the system moves
along C once, its configuration will be (xo, yo, zo,po + Ap) (refer to Fig.3 (a)). If the closed
curve C was traversed in tile opposite direction, then the final configuration of the system

would have been (zo, yo, zo, po - tAp). Now consider the initial configuration of tihe system to
be (z', y', z', m), such that (x', y', z') does not lie on C. Let P be any path segment connecting
the point (x', y', z') and any point (zo, yo, zo) on the closed curve C. Let 6p denote the change
in the dependent variable p, as z, y, and z move along the path segment P from (x', Y', Z')

to (xo,yo,zo). Then, if the system moves from the initial configuration (x',y',z',pu) to the
closed curve C along P, then moves once along the closed curve C, and finally retraces the
path P backwards, the configuration of the system at the end of the path (see Fig.3 (b)) will
be (x', y', z',N + Ap). This is true L -cause the surface integral of the closed curve beginning
and ending at the point (x', y', z') is equal to the surface integral of tile closed curve C.
From this discussion it follows that the closed curve C that can bring about the desired
change in the dependent variable can lie anywhere in the space defined by the independent
generalized coordinates - it does not have to pass through the initial configuration of the
system. Of course, it would be simpler to plan a closed path passing through the initial

configuration of the system but then such a path may not be feasible due to singularity
problems. We will discuss the singularity problem in the particular situation of a rolling

disk, in section 4.

In regards to statement 2 discussed above, we would just like to mention that closed
trajectories of the independent variables that result in closed trajectories of the dependent
variables (repeatable motion) will be of importance to us in the context of nonholonomnic

motion planning. Repeatability in tile motion may be simply a desirable property as in
the case of space robots, or may even be used for singularity avoidance as in the case of a
rolling disk. In section 4 we will investigate into the repeatability of the motion of a space

robot and of a rolling disk.

3. Issues related to Nonholonomic Motion Planning

Tile configuration space of a nonholonomic system is described by the set of its in-
dependent and the dependent variables. The task of nonholonomic motion planning is

to generate trajectories of the independent variables that will take the system from its
current configuration to some desired configuration. In the context of the rolling disk, the
motion planning would therefore refer to the generation of the 0 and a trajectories that
will take the system from some initial configuration (x,, v,, 0,, a,) to some final configuration

The question that naturally arises in the context of motion planning is related to the
reachability* of the system. In the case of the rolling disk, we know that any configuration

of the system is reachable from any other. This follows from our discussion in section 1. For

* A number of researchers like [101, prefer to use the term controllability to reachability,
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a multibody car system (a car with n trailers), a mathematical proof of the controllability
(reachability) was provided in [1]. For nonholonomic systems in general, the reachability
can be ascertained by constructing the control Lie algebra and then using the controlla-

bility theorem for nonlinear systems [3]. The control Lie algebra is the smallest involutive

distribution containing tile span of the vector fields of the system and closed under Lie
bracket operations. If the rank of this Lie algebra is full at some configuration C of the
system, then there exists a neighborhood N of C whose points represent configurations
reachable by the system from C along admissible paths. Clearly, this condition is a local

condition. If this condition holds good at every point in the configuration space, then any
configuration of the system is reachable from any other using admissible paths.

The controllability (reachability) of a number of simple nonholonomic systems has
been verified using the approadi discussed above. However, for complicated systems like
a 61)OF free-flying space robot 1121, this approach is not useful. In the next section we
will generate admissible trajectories for simple nonrholonomic systems using an algorithirr
based on Stokes's Theorem. For the two nonholonomic systems that we have considered
in section 4, we find that rec.,hability can be easily concluded directly from our algorithm.

An important feature of motion planning algorithms should be their ability to plan
admissible trajectories amidst additional constraints. In the case of robot manipulators
these additional constraints may appear in the form of obstacles in tile workspace or limits
imposed on the angular displacement of tile joints. In the case of the rolling disk admissible

trajectories may have to be planned by avoiding obstacles in tile X-y plane. Collision-free

trajectories or trajectories amidst additional constraints have been planned using artificial
potential functions [7], [131. In comparison to these approaches, the algorithir discussed in

this paper has a global attribute. This feature will be evident in the next section through

examples.
While discussing the properties of nonholonomic systems in section 2, we realized

that closed trajectories of the independent variables more often result in a change in tile

dependent variables. This will provide a basis for our motion planning algorithm, where
closed trajectories of tile independent variables will be suitably planned in order to produce
a desired change in the dependent variables. In particular situations we may however be
interested in finding closed trajectories of the independent variables that also produce

closed trajectories of the dependent variables (repeatable motion). Consider the example
of a planar robot in space with two links mounted in a space vehicle, as shown in Fig.4. In

this case, the orientation of the space vehicle O is the dependent variable while the joint
variables 01 and 02 are the independent variables. If this robot is expected to perform a
repeatitive task in space, wo would expect all the variables 00, 01, and 0ý to move along

closed trajectories. In the next section, we illustrate repeatability in the case of a two-link
space robot, and for a rolling disk. In the case of tile rolling disk repeatable motion leads
to the generation of singularity free trajectories.

and adhere to the terminology used in 1141.
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4. Nonholonomic motion planning using Stokes's theorem

4.1 Example 1: A planar space robot

In this section we illustrate our algorithm for nonholonomic motion planning using

Stokes's theorem, through the example of a 2-DOF planar space manipulator. We consider

a planar free-flying space manipulator consisting of two links mounted on a space vehicle,
as shown in Fig.4. Such a system can be described by five coordinates: zo, yo, and 0o

representing the position of the center of mass and the orientation of the space vehicle,
and 0, and 082 representing the joint angles of the manipulator. The variables xo and yo can

be eliminated by using the holonomic constraints due to linear momentum conservation.
The 2-DOF system is then described by three generalized coordinates 0,, i = 0,1,2, and
one nonholonomic constraint due to the conservation of angular momentum given by the
relation

10 (A -i +b0 2) (13)

where,

1 ( 1)
2m1 -2 s M 1+ + 2 41 4 2

a= -A - Mlo- 12 1 +M1_2,22)12OS0
b ! M (12 + I + M2-M2111 2 coS 2 -0) 22 - rm2 (Imi + m2)11 12 cosO2 (14)

and where, in%, ml and M2 are the masses of the space vehicle and the two links, 10, 1, and

12 are the moments of inertia of the space vehicle and the two links about their center of
masses, 11 and 12 are the length of the two links, and M = (mo+mI+m 2 ) and I = (Io+Il +12).

The configuration of the space manipulator can be described by (00,01,02). Then

the path planning problem is to find suitable trajectories for 0 and 02 Lhat will change

the current configuration of the space manipulator to some desired configuration. This
immediately raises the question pertaining to the reachability of the system - is it possible

to plan trajectories that will take the space manipulator from any initial configuration to

any final configuration. The answer to this question is yes, and can be obtained directly
from our path planning algorithm, discussed below.

Let the arbitrary initial and desired configurations of the space manipulator be denoted

by (o0, h,, 020) and (0ot, 01f,021) respectively. We first converge the joint variables Oe, and 02,

(the independent variables) to their desired values Olf and 02f respectively. In this process,
let the orientation of the space vehicle (the dependent variable) drift from Do, to some value

0od. The task is now to plan a cyclic motion for the joints of the manipulator such that the
orientation of tile space vehicle changes from 0od to 0oo while the joint angles come back to

10



their desired configuration. The associated reachability problem can be solved if we can
show that it is possible to change the orientation Oo by an arbitrary amount using cyclic
motion of the joints, at any joint configuration 01 and 02. For cyclic motion of the joints,
the change in Ol is represented as

dOo = • (adO + bd02) (15)

where, A, a, and b have been defined by Eq.(14), and C in Eq.(15) is a closed curve in the
01-02 plane that we will suitably choose. Using Green's theorem given by Eq.(6), tile above
equation is simplified to

fdOo (aJ)[](~ A dOd2

=M0oJL (A cs) dOldO2  (16)

)22+1212(- 1 12+1 2
M( l + m2) 1I+-1 -22-M 2+ ( MI + M2) I+ -M 2 12

-(,,o + ýmO)m2l11 2  (17)

where, the expressions for a and b were substituted from Eq.(14), and S is the surface in
the 01-02 plane confined within the closed curve C. Let the desired change in Oo 1 e denoted
as 0o. Then the path planning problem reduces to the proper selection of tile area S in the
O--02 plane such that tile following equality is satisfied

p dO~O OoIL (A + Bcos0 2  d-0 k (18)

If we choose a rectangular path in the 01-02 plane, such that tile sides of this rectangle
are parallel to the ol and 02 axes, then the above identity reduces to

(0lu-0u)[A +BcoO' A +Bcos0 23 J (9
(01.-011) - I =k (19)

where, oi and O, denote the lower and upper extremities of 0 in the rectangular path
while 024 and 0u, denote the same for 0.2.

The reachability of the system can be proven by showing that there exists a surface
S such that tile equality in Eq.(18) can be satisfied for any arbitrary value of k. The
initial values of 0l and 02 does not necessarily have to lie on the boundary of this surface
S. This follows from our discussion in section 2.2. We first note that if the identity in
Eq.(18) can be satisfied for some value of k by traveling along the boundary of the area S
in the positive direction, then the same identity can be satisfied for -k by simply traveling
along the boundary in the negative direction. Furthermore, if the identity can be satisfied
for some value of k by traveling once along the boundary of S, then the identity can be
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satisfied for the value nk, n = 1, 2,-.., by traveling n times along the boundary in the same
direction. Clearly, the reachability problem reduces to showing that the identity in Eq.(18)
can be satisfied for any value of k E [0, c), where c is some positive small number. For a
rectangular area S, this is easy to prove. We can always choose the values of 02, and 02, in

Eq.(19) such that the quantity a defined as

a= A+Bcos02, - A+Bcos02i)

is not equal to zero. Then it is quite obvious that (01, - 0 1) can be chosen to be equal to
k/a such that the identity in Eq.(19) can be satisfied for any value of k E [0, e).

We now illustrate our path planning algorithm with the help of a simple example. We
consider a space manipulator (refer to Fig.4) of material alluminum, whose kinematic and

dynamic parameters are given below in SI units:

Kinematic and Dynamic parameters

Mass Inertia Length
Vehicle 27.440 1.520

Link-1 5.380 0.115 11 = 0.50

Link-2 2.640 0.028 11 = 0.35

Let the initial configuration of the system be (00s,0h,,02,) - (0.0,15.0,15.0) degrees, and the
final configuration be (Oof,01f,02f) - (-20.0,45.0,0.0) degrees. We first converge 01 and 02

from their current values to their desired values using the straight line trajectory OA, as

shown in Figs.5 and 6. In this process, the orientation of the space vehicle drifts from
0.0 degrees to 0 0d = -12.87 degrees, as shown in Fig.6. Therefore, Vo = (0of - 00,) = -7.13

degrees, or -0.1244 radians. We now plan a cyclic motion of the joints such that after

three complete cycles of the joint motion the orientation of the space vehicle changes
by the desired amount. Then, for each cycle, the required change of orientation would be
-0.1244/3.0 = -0.0415 radians. Using this value for ýo, the value of k in Eq.(18) is computed

to be -7.696 x 10-4. With the complete liberty to choose the closed path in the joint space,

we choose the simple directed path given by the rectangle ABCD in Fig.5. The closed

curve is chosen such that the intermediate configuration of the system - point A, lies on

this closed curve. The surface integral in Eq.(18) then simply reduces to

BCd A + )cos02  d0= (01f - 01.) (A+B 1 09/ A+B COS 02,

4r ( - 1 0) (20)= (A •)A+Bos7 A +Bcos0)

where, A and -y have to be chosen appropriately. We choose A = 125.0 degrees i.e. 2.181

radians. Then using the values of A = -89.848 and B = -13.92 from Eq.(17) and the table
above, we obtain the value of y = 0.596 radians or 53.36 degrees. For this choice of A and Y,

the evolution of all the configuration variables for the path OABCD are shown in Fig.6.

12



We would like to mention a few points at this juncture. For the same set of values of
"- and A, there are infinite paths that will produce the same change in the orientation 00.
As for example, the directed paths OABCDA (taken from Fig.5) and OADMNA in Fig.7
will produce the same change in the orientation 00. In both these cases the intermediate
configuration (0od, Ol, 02f) - point A, lie on the closed curves ABCD and ADMN. This only
simplifies the motion planning problem but is not a necessary condition, as we have already
discussed in section 2.2. Area ADMN can be concieved as a translation of the area ABCD
to the left along BA. In fact, the translation of the area ABCD by any amount along the
line BA will result in feasible closed trajectories. This follows directly from the expression
for the surface integral in Eq.(20). We see that the surface integral in Eq.(20) depends
upon the difference of the values of Olf and 01,, but not individually on Olf and 01,. There
are also infinite other combinations of \ and -y values that we can choose to satisfy Eq.(20).
And there is even more flexibility when we can suitably choose the number of cycles of
joint motion that will produce the desired change in the orientation 00. As for example,
in the particular situation discussed above, the directed path AXYZ can bring about the
same change in 00 in four cycles of the joint motion that the paths ABCD and ADMN can
bring about in three cycles. The path AXYZ was obtained by choosing - = 75.0 degrees
which led to the value of A = 76.084 degrees.

We next consider the practical situation where the trajectory of the system may have
to be planned subject to the joint limits 1D, 1 1 120 degrees. Then for the above example, the
trajectories ADMN and AXYZ in Fig.7 would be feasible whereas the trajectory ABCD
would not be feasible. It is quite clear that our path planning algorithm provides us with
the flexibility in choosing trajectories that can satisfy additional constraints, like joint
limits in the case of space robots.

We complete this section with a discussion on repeatable motions of the space robot.
In particular situations, a space robot may be expected to perform a repeatative task
in space. In such a situation the end-effector of the robot as well as the configuration
variables of the robot will all have to move along closed trajectories. If the joints of the
robot, shown in Fig.4, move along closed trajectories, the dependent variables xo and Vo
will always move along closed trajectories because of the holonomic nature of the linear
momentum constraints. The dependent variable 00 will however not move along a closed
trajectory in the general case. If the net change in 0o were also to be zero as the joints
moved along a closed rectangular path, then from Eq.(19), the necessary conditions that
would have to be satisfied are 01, = 0,1, or cos0 2u = cos021 (assuming a rectangular path in
the 01-02 plane). The first condition leads us to the trivial case where the first joint of the
robot will have to be kept fixed. The second condition tells us that repeatability is assured
for 02 + 02 = 2nr, n = 0, ±1, ±2,.... In the previous example that we considered, we found
that we had a significant amount of flexibility in choosing the closed trajectories. Though
the condition 02, + 021 = 2vw, n = 0, ±1, ±2,..., will restrict our choices, we should still be
able to choose from a variety of paths that will produce repeatable motion.
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4.2 Example 2: A disk rolling without slipping on a fiat surface

We revisit the classical example of the disk rolling without slipping on a flat surface

and this time we apply our algorithm for its nonholonomic path planning. The configu-

ration space of the rolling disk, as discussed in section 1, is described by (x, ,, 0,a). The
independent variables of the system are 0 and a, and x and y are the dependent variables

constrained by the expressions given in Eq.(3). While planning a path from an initial
configuration of the disk (x,, 8,, a,, a,) to some desired configuration (xj, yOf, a, ), we first
converge the independent variables to their desired values using some simple trajectory

without being mach concerned about the evolution of the dependent variables. This tra-
jectory may however be important so as to avoid a singularity problem, which we shall

discuss soon. At the end of this trajectory (path segment OP in Fig.8), the dependent
variables are assumed to drift to values xd and Yd. Now the task is to plan a closed palli

for the independent variables 0 and a such that the dependent variables x and y change
their values from xd and Yd to Xf and yf respectively. Let C be such a closed path in the
0-a plane. Then the change of the variables x and y are represented as

(xf - Xd) = c r sin adO = L i-r cos a dO da (21)

(Y -Yd) = Jcr cosadO = f isr sina dOdca (22)

where, we applied Green's theorem, given by Eq.(6), to convert the line integral into the

surface integral. Therefore, S is the surface in the 0-a plane within the closed curve C. We
choose the closed curve C as the directed rectangular path PQRSP as shown in Fig.8. For
this rectangular path PQRSP, Eqs.(21) and (22) yield

(Xf - Xd) = -2 a r sin(b/2) cos(af + b/2) (23)

(Y! - Yd) = 2 a r sin(b/2) sin(af + b/2) (24)

Assuming b j 2nir, n = ±1,=±2,..., we solve for a and b as follows

b = 2 [-a! + arctan 2 (yf - yd, xd - xf)], 0 < b < 47r (25)

{(Xf - X,,) 2 + (yf' - Y/d) 2 112(6

2 r sin(b/2) , a>0 (26)

As the disk would move along the sides QR and SP of the rectangular path PQRSP in
Fig.8, the value of a would have to change in the absence of rolling. This may not be simple

to achieve in practice, as for example in the case of an unicyclist. We therefore modify

our rectangular path to the path PQMNP in Fig.8 where a would change only when the

disk is rolling. It is easy to show that surface the integral in Eq.(21), as in Eq.(22), will
have the same value when the closed curve C is the rectangle PQRSP or the parallelopiped

PQMNP.
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Equation (26) has a singularity for

arctan 2 (y! - Yd, Xd - xf) = a! (27)

and there are three simple ways to overcome this singularity problem. One way would be
to arrive from the initial configuration to a different intermediate configuration i.e. at a

different set of values xd and Yd, that would not satisfy Eq.(27). This would require us
to choose a different trajectory from 0 to P (see Fig.8). The second alternative would be
to set an intermediate goal x', y' and first move to this configuration from Xd, yd using

cyclic motion of the independent variables. Then the remaining task would be to plan a
second cyclic motion of the independent variables such that the dependent variables would

converge to xf, yq from their values x', y'. The smart alternative would be to follow the
three step procedure explained below and diagrammatically shown in Fig.9.

1 Change the present configuration variables Of and af to some other values O and a,1
using any trajectory OR, such that a' $ a1 , at R. Ignore the evolution of the variables
x and y that take the new values x', y, at R from their values xd, yd at 0.

2 Construct any closed path C passing through R, that will change the x and y variables

by amounts (xf - xd) and (yf - Yd) respectively. If we choose a rectangular path, or the
equivalent parallelogram path, then the dimensions of this path would be computed
from Eqs.(24) and (25) only by replacing af in Eq.(24) by a,. Move along this closed
trajectory once to come back to R where 0 = O and a = a.

3 Retrace backwards the trajectory OR to move from R to 0. At 0 the configuration of
the system would be (x1, yf, Of, a!).

The above procedure for singularity avoidance follows from our discussion in section

2.2. This procedure is also recommended for avoiding points close to singular points.
At points close to the singularity, trajectories tend to become infeasible due to the large

magnitude of a, as evident from Eq.(26).

We are now convinced that any configuration of the rolling disk (x!, y!, Of, aO ) can be
reachable from any initial configuration (xi, y,, 0,, a,) by using the motion planning algorithm

discussed in this section. Though in certain situations, there may be a singularity problem,
this problem can be easily overcome. The singularity that we may encounter is however

not a physical singularity, it is rather an algorithmic singularity. The singularity problem
can be completely removed by adopting a slightly different algorithm. This algorithm, to

be discussed shortly, uses the repeatable motion of one of the dependent variables. This
algorithm will further strengthen our conviction on the reachability issue of the rolling

disk.

We illustrate our path planning algorithm with the help of a simple example. In this

example we come close to the singularity and we tactfully avoid it using the algorithm
discussed above. Consider a disk of radius r = 0.25m which is at its current configuration
(x,,y,,O,,a,) = (0.0,0.0,0.0,0.0) metres, degrees. Suppose the desired configuration of this
disk is (xf,ylu,Of,af) =_ (-0.4,1.0,180.0,22.5) metres, degrees. We first converge the vari-
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ables 0 and a to their desired values using the simple straight line path OZ, as shown in
Fig.10. The coordinates of x 4md y at the end of this path will be 0.1522 and 0.7654 metres
respectively (obtained through numerical simulation). Using Eqs.(25) and (26), we solve
for a and b as b = 0.01808 and a = 132.72 radians respectively. Clearly, we are close to a
singular configuration. In the light of the discussion on singularity avoidance, we adopt
the following measure. We have the complete liberty to choose 0' and a' (point R in
Fig.9), with the only restriction that a'1 0 ap. We choose (0,, ar) = (0,, a,) = (0.0, 0.0). And
we change 0o and a1 to 0, and a, by retracing the path OZ backwards (see Fig.10). We
therefore come back to the initial configuration where (x,y,0,a) = (x,,Y,,,0,, a,). Now we
substitute the value of a, in place of af in Eq.(25) and solve for a and b from Eqs.(25)
and (26). We obtain b = 0.8034 radians or 46.03 degrees and a = 3.068 radians or 175.78
degrees. In Fig.10, the path OPQRO is the closed path constructed with these values of a
and b. Due to the motion along this closed path the change in the x and y coordinates will
be (x! - Xd) = (-0.4 - 0.1522) = -0.5522 metre and (yf - Yd) = (1.0 - 0.7654) = 0.2346 met-,

respectively. Therefore the coordinates at 0 of the dependent variables after the motion
along the closed path will be x = -0.5522 and y = 0.2346 metres. We finally trace the
straight line path from 0 to Z. Due to this motion the change in the z and y coordinates
will be (Xd - X,) = (0.1522 - 0.0) = 0.1522 metre and (Yd - Yi) = (0.7654 - 0.0) = 0.7654 metre
respectively. Therefore, the coordinates at Z will be (-0.5522 + 0.1522) = -0.4 metre and
(0.2346+0.7654) = 1.0 metre respectively. The coordinates of the independent variables at Z
are obviously 0 = 180.0 degrees and a = 22.5 degrees. Looking back at the entire motion, we
realize that the initial path from 0 to Z and back to 0 is redundant. Therefore, the path
that will be sufficient for converging all the variables will be OPQROZ, as shown in Fig.10.
The closed path OPQRO is chosen to be a parallelogram instead of a rectangle for reasons
we have already discussed earlier in this section. The complete path OPQROZ is quite
different from paths that are generated in the absence of singularity. In the absence of
singularity, the complete path consists of an initial path segment followed by a closed loop
in the O-a plane. In the particular example that we have considered, we had a singularity
and the complete path consisted of a closed loop path followed by a simple path segment.
The simulation results of this particular example have been shown in Fig. 11. The points
0, P, Q, R, and Z in Fig.11 correspond to the same points in Fig.10.

The singularity problem discussed above arises due to the particular nature of our
algorithm where we converge both the dependent variables x and y simultaneously using
closed trajectories of the independent variables. We have seen that this is not at all
a serious problem. However, this problem can be completely eliminated by adopting a
slightly different algorithm. The idea behind this algorithm is to use repeatable motion of
one of the dependent variables. This algorithm is discussed next.

In our singularity free algorithm, we will first converge the independent variables 0
and a from their initial values (0,, a,) to their desired values (O, af). Let us suppose that
the dependent variables x and y change their coordinates from x, and y, to Xd and yd

respectively. We will next converge x to its desired value xf using closed trajectories of the
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independent variables without being concerned about the evolution of the Y coordinate.
Specifically, we will use Eq.(23), where we will have the liberty to choose a set of values a
and b. Let us suppose that the dependent variable y drift from its previous coordinate Yd
to y•, in this process. We will finally converge y from its present coordinate y. to its desired
value y! using closed trajectories of the independent variables that will also produce a
closed trajectory of the dependent variable x, i.e. a repeatable motion in the x coordinate.
From Eqs.(23) and (24) it follows that the correct choice of the variables a and b for this
repeatable motion should be

b= -2al±nir, a= 2rcosaY ' af ::±(2n+1)7r/2, n=0,1,2,..- (28)

where Ay = (yf -,), and b will be chosen such that b > 0. The magnitude of a can however
be positive or negative. We will use the absolute value of a to construct the parallelogram
path in the 0-a plane. If the sign of a is obtained negative from Eq.(28), then the use of
the positive value will bring about a change in the y coordinate by an amount -AY instead
of Ay. This problem can be simply solved by changing the direction of travel along the
closed path. This idea has been appropriately demonstrated in the next simulation.

As an alternative, we could also converge the dependent variable y before we converge
the dependent variable x. In that case, after the initial motion from the configuration
(xi, y, 0,, a,) to the configuration (xd, Yd, f, af), we would suitably choose a and b in Eq.(24)
such that y converges from -y to yf. At this stage we will not be concerned about the
evolution of the x coordinate, which will probably drift from xd to x'A. Finally, we will
change the variable x by an amount Ax = (xf - x') using closed trajectories of 0 and a

that will also produce a closed trajectory of y, i.e. a repeatable motion in the y coordinate.
From Eqs.(23) and (24) it then follows that the correct choice of the variables a and b
would be

Ax

b=2(nflr-caf), a= 2rsinaA ' af ±nir, n=0,1,2,... (29)

where, b will be chosen such that it is a positive number, and the absolute value of a will
be used to construct the trajectory. The direction of travel along the closed trajectory
should be along the positive or the negative direction depending upon whether the sign of
a comes out to be positive or negative in Eq.(29).

From the two alternatives we conclude that if the final value of a is such that a1 =

i(2n + I)ir/2, for n -= 0,1,2,..-, then we will first converge y and then converge x. If
a1 = ±n7r, for n = 0,1,2,-.., then we will first converge x and then converge y. For
a1  n n'r/2, for n = 0, 1, 2,..-, either of the two alternatives mentioned above can be adopted.

To illustrate the efficacy of this singularity free algorithm, we consider the same ex-
ample we have considered before. The initial configuration of the disk of radius r = 0.25
metres is (x,, y,, 8,, a,) = (0.0,0.0,0.0,0.0) metres, degrees, and its desired configuration is
(xf,yf,Of, af) = (-0.4,1.0,180.0,22.5) metres, degrees. We first converge the independent
variables using a straight line path (path segnment OP in Figs.12 and 13) in the O-a
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plane. At the end of this path the configuration of the system is found to be (x, y, 0, Ca) =
(0.1522,0.7654,180.0,22.5) metres and degrees respectively. Since af = 22.5 degrees 0 n 7r/2,

for n = 0,1,2, ---, therefore we can choose to first converge x or y. We choose to converge x

first. In Eq.(23), we substitute x! = -0.4 metres, xd = 0.1522 metres, and af = 22.5 degrees.
Choosing b = 60 degrees or 1.047 radians, we obtain a = 3.628 radians or 207.87 degrees. For

these values of a and b, the closed path is given by PQRSP in Fig.12. After moving along
this path, the y variable drifts from yd = 0.7654 metres to y' = 1.485 metres, as shown in
Fig. 13, whereas the x coordinate converges to its desired value. Now the task is to generate
a closed path in the 0-a plane that will cause a repeatable motion in x but will converge y

to yf = 1.0 metre. Using Eq.(28) we arrive at b = 135 degrees, or 2.356 radians and a = -1.05
radians, or 60.15 degrees. For these particular values of a and b, the closed trajectory is

given by PXYZP in Fig.12. Due to the negative value of a the direction of this closed
path is opposite to our usual convention. The entire motion of the system can be obtained

by eliminating the redundant path segment SPS. Therefore the complete motion of the

system would be OPQRSXYZP, as shown in both Figs. 12 and 13.

5. Conclusion

A motion planning algorithm for nonholonomic mechanical systems was presented in

this paper. In this algorithm, the independent variables of the system were first converged

to their desired values. Subsequently, the dependent variables were converged using closed
trajectories of the independent variables. The task of motion planning was simplified using

Stokes's theorem. This reduced the task of finding closed trajectories of the independent
variables into that of finding a surface area in the space of the independent variables such

that the dependent variables converged to their desired values while the independent vari-
ables traversed along the boundary of this surface area. The motion planning algorithm
was found to have certain global attributes due to which questions pertaining to the reach-

ability of the system could be easily answered and the motion could be planned amidst

additional constraints. The salient features of the algorithm was aptly illustrated through
the examples of a planar space robot and a disk rolling without slipping on a flat surface.

REFERENCES

[1] Barraquand, J., and Latombe, J.C., 1990, "Controllability of mobile robots with kine-
matic constraints", Technical Report: STAN-CS-90-1317, Stanford University.

[2] Cole, A., Hauser, J., and Sastry, S., 1989, "Kinematics, and control of a multifingered

robot hand with rolling contact", IEEE Transactions on Automatic Control, 34(4).

[31 Hermann and Krener, "Nonlinear controllability and observability", IEEE Transactions

on Automatic Control, 22(5).

[41 Ince, E.L., 1956, "Ordinary Differential Equations", Dover Publications, New York.

[5] Jacobs, P., and Canny, J., 1990, "Robust motion planning for mobile robots", IEEE

18



International Conference on Robotics and Automation, Cincinnati.

[6] Jacobs, P., Rege, A., and Laumond, J.P., 1991, "Non-holonomic motion planning for
Hilare-like mobile robots", International Symposium on Intelligent Robotics, Bangalore,
India.

[7] Khatib, 0., 1985, "Real-time obstacle avoidance for manipulators and mobile robots",
IEEE International Conference on Robotics and Automation, pp. 500-505.

181 Kreyzig, E., 1972, "Advanced Engineering Mathematics", Wiley Eastern Limited.

[9] Lafferriere, G., and Sussman, lt.J., 1990, "Motion planning for controllable systems
without drift", IEEE International Conference on Robotics and Automation: Workshop
on Nonholonomic Motion Planning.

[10] Laumond, J.P., 1990," Nonholonomic Motion planning versus Controllability via the
Multibody Car system example", Technical Report: STAN-CS-90-1345, Stanford Univer-
sity.

[11] Murray, R.M., and Sastry, S.S., 1991, "Nonholonomic Motion Planning using Sinu-
soids", 1991 IEEE International Conference on Robotics and Automation: Workshop on
Nonholonomic Motion Planning.

[12] Nakamura, Y., and Mukherjee, R., 1991, "Nonholonomic Motion Planning of Space
Robots via a Bi-Directional Approach", IEEE Transactions on Robotics and Automation,
Vol. 7, No. 4, pp. 500-514.

[13] Mukherjee, R., and Nakamura, Y., 1991, "Nonholonomic Redundancy of Space Robots
and its utilization via hierarchical Liapunov ýunctions", American Control Conference, Vol.
2, pp. 1491-1496.

[14] Sussman, II.J., 1982, "Lie brackets, real analyticity and geometric control", Differential
Geometric Control Theory, Eds. Brockett, Millman, Sussman, Birkhauser.

[15] Vafa, Z., and Dubowsky, S., 1987, "On the dynamics of manipulators in space us-
ing the virtual manipulator approach", IEEE International Conference on Robotics and
Automation.

19



zP

r •Y

(Xd, Yd) Te
A D

(X, y)

B

0

Figure 1. A disk rolling on a flat surface is described by four configuration
variables: x, y, 0, ax. The disk has however two degrees of freedom due to
the presence of two nonholonomic constraints.
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Figure 3 (a). The closed trajectory C in the independent variables x, y, and z
produces a change in the dependent variable p by an amount Ap. The initial
configuration of the system - (1), lies on this closed trajectory.
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Figure 3 (b). The closed trajectory C in the independent variables x, y, and z
produces a change in the dependent variable p by an amount Ap. The initial
configuration of the system - (1), does not lie on this closed trajectory.
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Figure 4. A two-link manipulator mounted on a space vehicle is described
by three generalized coordinates: 0o, 10 , 0 2. The center of mass of the
space vehicle has the coordinates x 0, Y 0.
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Figure 5. The path segment OA followed by the closed path ABCDA was
used to converge all the configuration variables of the space robot, for the
simulation discussed in section 4.1. The closed path was repeated 3 times.
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Figure 6. Evolution of all the configuration variables of the space robot
with time, for the simulation discussed in section 4.1. Points 0, A, B, C
and D in this figure correspond to the same points in Fig.5.
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of the vehicle in four cycles by the same amount that the closed paths ABCD and
ADMN can bring about in three cycles.
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Figure 9. A diagrammatic representation of the singularity avoidance scheme
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Figure 10. The path OPQROZ is the outcome of the successful implementation
of the singularity avoidance scheme for the rolling disk, discussed in section 4.2.
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Figure 11. Path OPQROZ shows the motion of the disk rolling on the
x-y plane, for the simulation discussed in section 4.2 on the singularity
avoidance scheme. Fig. 10 shows the motion of the disk on the 0-ox plane.
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Figure 12. The path OPQRSXYZP was planned using the singularity
free algorithm with a repeatable motion in the x coordinate
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Figure 13. Path OPQRSXYZP shows the motion of the disk rolling on the
x-y plane. This motion was planned using the singularity-free algorithm,
discussed in section 4.2, with a repeatable motion in the x coordinate. The
corresponding motion of the disk in the 0-o plane is shown in Fig. 11.
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